Logo Search packages:      
Sourcecode: ffmpeg-debian version File versions  Download package

swscale.c

/*
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * the C code (not assembly, mmx, ...) of this file can be used
 * under the LGPL license too
 */

/*
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  {BGR,RGB}{1,4,8,15,16} support dithering

  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  x -> x
  YUV9 -> YV12
  YUV9/YV12 -> Y800
  Y800 -> YUV9/YV12
  BGR24 -> BGR32 & RGB24 -> RGB32
  BGR32 -> BGR24 & RGB32 -> RGB24
  BGR15 -> BGR16
*/

/*
tested special converters (most are tested actually but i didnt write it down ...)
 YV12 -> BGR16
 YV12 -> YV12
 BGR15 -> BGR16
 BGR16 -> BGR16
 YVU9 -> YV12

untested special converters
  YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
  YV12/I420 -> YV12/I420
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  BGR24 -> BGR32 & RGB24 -> RGB32
  BGR32 -> BGR24 & RGB32 -> RGB24
  BGR24 -> YV12
*/

#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include "config.h"
#include <assert.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "x86_cpu.h"
#include "bswap.h"
#include "rgb2rgb.h"
#include "libavcodec/opt.h"

#undef MOVNTQ
#undef PAVGB

//#undef HAVE_MMX2
//#define HAVE_3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
//#define WORDS_BIGENDIAN
#define DITHER1XBPP

#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit

#define RET 0xC3 //near return opcode for X86

#ifdef MP_DEBUG
#define ASSERT(x) assert(x);
#else
#define ASSERT(x) ;
#endif

#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif

#define isSupportedIn(x)    (       \
           (x)==PIX_FMT_YUV420P     \
        || (x)==PIX_FMT_YUVA420P    \
        || (x)==PIX_FMT_YUYV422     \
        || (x)==PIX_FMT_UYVY422     \
        || (x)==PIX_FMT_RGB32       \
        || (x)==PIX_FMT_BGR24       \
        || (x)==PIX_FMT_BGR565      \
        || (x)==PIX_FMT_BGR555      \
        || (x)==PIX_FMT_BGR32       \
        || (x)==PIX_FMT_RGB24       \
        || (x)==PIX_FMT_RGB565      \
        || (x)==PIX_FMT_RGB555      \
        || (x)==PIX_FMT_GRAY8       \
        || (x)==PIX_FMT_YUV410P     \
        || (x)==PIX_FMT_GRAY16BE    \
        || (x)==PIX_FMT_GRAY16LE    \
        || (x)==PIX_FMT_YUV444P     \
        || (x)==PIX_FMT_YUV422P     \
        || (x)==PIX_FMT_YUV411P     \
        || (x)==PIX_FMT_PAL8        \
        || (x)==PIX_FMT_BGR8        \
        || (x)==PIX_FMT_RGB8        \
        || (x)==PIX_FMT_BGR4_BYTE   \
        || (x)==PIX_FMT_RGB4_BYTE   \
        || (x)==PIX_FMT_YUV440P     \
    )
#define isSupportedOut(x)   (       \
           (x)==PIX_FMT_YUV420P     \
        || (x)==PIX_FMT_YUYV422     \
        || (x)==PIX_FMT_UYVY422     \
        || (x)==PIX_FMT_YUV444P     \
        || (x)==PIX_FMT_YUV422P     \
        || (x)==PIX_FMT_YUV411P     \
        || isRGB(x)                 \
        || isBGR(x)                 \
        || (x)==PIX_FMT_NV12        \
        || (x)==PIX_FMT_NV21        \
        || (x)==PIX_FMT_GRAY16BE    \
        || (x)==PIX_FMT_GRAY16LE    \
        || (x)==PIX_FMT_GRAY8       \
        || (x)==PIX_FMT_YUV410P     \
    )
#define isPacked(x)         (       \
           (x)==PIX_FMT_PAL8        \
        || (x)==PIX_FMT_YUYV422     \
        || (x)==PIX_FMT_UYVY422     \
        || isRGB(x)                 \
        || isBGR(x)                 \
    )

#define RGB2YUV_SHIFT 16
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))

extern const int32_t Inverse_Table_6_9[8][4];

/*
NOTES
Special versions: fast Y 1:1 scaling (no interpolation in y direction)

TODO
more intelligent misalignment avoidance for the horizontal scaler
write special vertical cubic upscale version
Optimize C code (yv12 / minmax)
add support for packed pixel yuv input & output
add support for Y8 output
optimize bgr24 & bgr32
add BGR4 output support
write special BGR->BGR scaler
*/

#if defined(ARCH_X86) && defined (CONFIG_GPL)
DECLARE_ASM_CONST(8, uint64_t, bF8)=       0xF8F8F8F8F8F8F8F8LL;
DECLARE_ASM_CONST(8, uint64_t, bFC)=       0xFCFCFCFCFCFCFCFCLL;
DECLARE_ASM_CONST(8, uint64_t, w10)=       0x0010001000100010LL;
DECLARE_ASM_CONST(8, uint64_t, w02)=       0x0002000200020002LL;
DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;

static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;

static uint64_t __attribute__((aligned(8))) dither4[2]={
        0x0103010301030103LL,
        0x0200020002000200LL,};

static uint64_t __attribute__((aligned(8))) dither8[2]={
        0x0602060206020602LL,
        0x0004000400040004LL,};

DECLARE_ASM_CONST(8, uint64_t, b16Mask)=   0x001F001F001F001FLL;
DECLARE_ASM_CONST(8, uint64_t, g16Mask)=   0x07E007E007E007E0LL;
DECLARE_ASM_CONST(8, uint64_t, r16Mask)=   0xF800F800F800F800LL;
DECLARE_ASM_CONST(8, uint64_t, b15Mask)=   0x001F001F001F001FLL;
DECLARE_ASM_CONST(8, uint64_t, g15Mask)=   0x03E003E003E003E0LL;
DECLARE_ASM_CONST(8, uint64_t, r15Mask)=   0x7C007C007C007C00LL;

DECLARE_ALIGNED(8, const uint64_t, ff_M24A)         = 0x00FF0000FF0000FFLL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24B)         = 0xFF0000FF0000FF00LL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24C)         = 0x0000FF0000FF0000LL;

#ifdef FAST_BGR2YV12
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000000210041000DULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000FFEEFFDC0038ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00000038FFD2FFF8ULL;
#else
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000020E540830C8BULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000ED0FDAC23831ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00003831D0E6F6EAULL;
#endif /* FAST_BGR2YV12 */
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset)  = 0x1010101010101010ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_w1111)        = 0x0001000100010001ULL;
#endif /* defined(ARCH_X86) */

// clipping helper table for C implementations:
static unsigned char clip_table[768];

static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);

extern const uint8_t dither_2x2_4[2][8];
extern const uint8_t dither_2x2_8[2][8];
extern const uint8_t dither_8x8_32[8][8];
extern const uint8_t dither_8x8_73[8][8];
extern const uint8_t dither_8x8_220[8][8];

static const char * sws_context_to_name(void * ptr) {
    return "swscaler";
}

#define OFFSET(x) offsetof(SwsContext, x)
#define DEFAULT 0
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM

static const AVOption options[] = {
    { "sws_flags", "scaler/cpu flags", OFFSET(flags), FF_OPT_TYPE_FLAGS, DEFAULT, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "fast_bilinear", "fast bilinear", 0, FF_OPT_TYPE_CONST, SWS_FAST_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "bilinear", "bilinear", 0, FF_OPT_TYPE_CONST, SWS_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "bicubic", "bicubic", 0, FF_OPT_TYPE_CONST, SWS_BICUBIC, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "experimental", "experimental", 0, FF_OPT_TYPE_CONST, SWS_X, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "neighbor", "nearest neighbor", 0, FF_OPT_TYPE_CONST, SWS_POINT, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "area", "averaging area", 0, FF_OPT_TYPE_CONST, SWS_AREA, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "bicublin", "luma bicubic, chroma bilinear", 0, FF_OPT_TYPE_CONST, SWS_BICUBLIN, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "gauss", "gaussian", 0, FF_OPT_TYPE_CONST, SWS_GAUSS, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "sinc", "sinc", 0, FF_OPT_TYPE_CONST, SWS_SINC, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "lanczos", "lanczos", 0, FF_OPT_TYPE_CONST, SWS_LANCZOS, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "spline", "natural bicubic spline", 0, FF_OPT_TYPE_CONST, SWS_SPLINE, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "print_info", "print info", 0, FF_OPT_TYPE_CONST, SWS_PRINT_INFO, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "accurate_rnd", "accurate rounding", 0, FF_OPT_TYPE_CONST, SWS_ACCURATE_RND, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "mmx", "MMX SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "mmx2", "MMX2 SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX2, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "3dnow", "3DNOW SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_3DNOW, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "altivec", "AltiVec SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_ALTIVEC, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "bfin", "Blackfin SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_BFIN, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "full_chroma_int", "full chroma interpolation", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INT, INT_MIN, INT_MAX, VE, "sws_flags" },
    { "full_chroma_inp", "full chroma input", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INP, INT_MIN, INT_MAX, VE, "sws_flags" },
    { NULL }
};

#undef VE
#undef DEFAULT

static AVClass sws_context_class = { "SWScaler", sws_context_to_name, options };

char *sws_format_name(enum PixelFormat format)
{
    switch (format) {
        case PIX_FMT_YUV420P:
            return "yuv420p";
        case PIX_FMT_YUVA420P:
            return "yuva420p";
        case PIX_FMT_YUYV422:
            return "yuyv422";
        case PIX_FMT_RGB24:
            return "rgb24";
        case PIX_FMT_BGR24:
            return "bgr24";
        case PIX_FMT_YUV422P:
            return "yuv422p";
        case PIX_FMT_YUV444P:
            return "yuv444p";
        case PIX_FMT_RGB32:
            return "rgb32";
        case PIX_FMT_YUV410P:
            return "yuv410p";
        case PIX_FMT_YUV411P:
            return "yuv411p";
        case PIX_FMT_RGB565:
            return "rgb565";
        case PIX_FMT_RGB555:
            return "rgb555";
        case PIX_FMT_GRAY16BE:
            return "gray16be";
        case PIX_FMT_GRAY16LE:
            return "gray16le";
        case PIX_FMT_GRAY8:
            return "gray8";
        case PIX_FMT_MONOWHITE:
            return "mono white";
        case PIX_FMT_MONOBLACK:
            return "mono black";
        case PIX_FMT_PAL8:
            return "Palette";
        case PIX_FMT_YUVJ420P:
            return "yuvj420p";
        case PIX_FMT_YUVJ422P:
            return "yuvj422p";
        case PIX_FMT_YUVJ444P:
            return "yuvj444p";
        case PIX_FMT_XVMC_MPEG2_MC:
            return "xvmc_mpeg2_mc";
        case PIX_FMT_XVMC_MPEG2_IDCT:
            return "xvmc_mpeg2_idct";
        case PIX_FMT_UYVY422:
            return "uyvy422";
        case PIX_FMT_UYYVYY411:
            return "uyyvyy411";
        case PIX_FMT_RGB32_1:
            return "rgb32x";
        case PIX_FMT_BGR32_1:
            return "bgr32x";
        case PIX_FMT_BGR32:
            return "bgr32";
        case PIX_FMT_BGR565:
            return "bgr565";
        case PIX_FMT_BGR555:
            return "bgr555";
        case PIX_FMT_BGR8:
            return "bgr8";
        case PIX_FMT_BGR4:
            return "bgr4";
        case PIX_FMT_BGR4_BYTE:
            return "bgr4 byte";
        case PIX_FMT_RGB8:
            return "rgb8";
        case PIX_FMT_RGB4:
            return "rgb4";
        case PIX_FMT_RGB4_BYTE:
            return "rgb4 byte";
        case PIX_FMT_NV12:
            return "nv12";
        case PIX_FMT_NV21:
            return "nv21";
        case PIX_FMT_YUV440P:
            return "yuv440p";
        default:
            return "Unknown format";
    }
}

#if defined(ARCH_X86) && defined (CONFIG_GPL)
void in_asm_used_var_warning_killer()
{
    volatile int i= bF8+bFC+w10+
    bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
    ff_M24A+ff_M24B+ff_M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
    if (i) i=0;
}
#endif

static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                               int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                               uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
{
    //FIXME Optimize (just quickly writen not opti..)
    int i;
    for (i=0; i<dstW; i++)
    {
        int val=1<<18;
        int j;
        for (j=0; j<lumFilterSize; j++)
            val += lumSrc[j][i] * lumFilter[j];

        dest[i]= av_clip_uint8(val>>19);
    }

    if (uDest)
        for (i=0; i<chrDstW; i++)
        {
            int u=1<<18;
            int v=1<<18;
            int j;
            for (j=0; j<chrFilterSize; j++)
            {
                u += chrSrc[j][i] * chrFilter[j];
                v += chrSrc[j][i + 2048] * chrFilter[j];
            }

            uDest[i]= av_clip_uint8(u>>19);
            vDest[i]= av_clip_uint8(v>>19);
        }
}

static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
{
    //FIXME Optimize (just quickly writen not opti..)
    int i;
    for (i=0; i<dstW; i++)
    {
        int val=1<<18;
        int j;
        for (j=0; j<lumFilterSize; j++)
            val += lumSrc[j][i] * lumFilter[j];

        dest[i]= av_clip_uint8(val>>19);
    }

    if (!uDest)
        return;

    if (dstFormat == PIX_FMT_NV12)
        for (i=0; i<chrDstW; i++)
        {
            int u=1<<18;
            int v=1<<18;
            int j;
            for (j=0; j<chrFilterSize; j++)
            {
                u += chrSrc[j][i] * chrFilter[j];
                v += chrSrc[j][i + 2048] * chrFilter[j];
            }

            uDest[2*i]= av_clip_uint8(u>>19);
            uDest[2*i+1]= av_clip_uint8(v>>19);
        }
    else
        for (i=0; i<chrDstW; i++)
        {
            int u=1<<18;
            int v=1<<18;
            int j;
            for (j=0; j<chrFilterSize; j++)
            {
                u += chrSrc[j][i] * chrFilter[j];
                v += chrSrc[j][i + 2048] * chrFilter[j];
            }

            uDest[2*i]= av_clip_uint8(v>>19);
            uDest[2*i+1]= av_clip_uint8(u>>19);
        }
}

#define YSCALE_YUV_2_PACKEDX_C(type) \
    for (i=0; i<(dstW>>1); i++){\
        int j;\
        int Y1 = 1<<18;\
        int Y2 = 1<<18;\
        int U  = 1<<18;\
        int V  = 1<<18;\
        type av_unused *r, *b, *g;\
        const int i2= 2*i;\
        \
        for (j=0; j<lumFilterSize; j++)\
        {\
            Y1 += lumSrc[j][i2] * lumFilter[j];\
            Y2 += lumSrc[j][i2+1] * lumFilter[j];\
        }\
        for (j=0; j<chrFilterSize; j++)\
        {\
            U += chrSrc[j][i] * chrFilter[j];\
            V += chrSrc[j][i+2048] * chrFilter[j];\
        }\
        Y1>>=19;\
        Y2>>=19;\
        U >>=19;\
        V >>=19;\
        if ((Y1|Y2|U|V)&256)\
        {\
            if (Y1>255)   Y1=255; \
            else if (Y1<0)Y1=0;   \
            if (Y2>255)   Y2=255; \
            else if (Y2<0)Y2=0;   \
            if (U>255)    U=255;  \
            else if (U<0) U=0;    \
            if (V>255)    V=255;  \
            else if (V<0) V=0;    \
        }

#define YSCALE_YUV_2_RGBX_C(type) \
    YSCALE_YUV_2_PACKEDX_C(type)  \
    r = (type *)c->table_rV[V];   \
    g = (type *)(c->table_gU[U] + c->table_gV[V]); \
    b = (type *)c->table_bU[U];   \

#define YSCALE_YUV_2_PACKED2_C   \
    for (i=0; i<(dstW>>1); i++){ \
        const int i2= 2*i;       \
        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;           \
        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;           \
        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;  \
        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;  \

#define YSCALE_YUV_2_RGB2_C(type) \
    YSCALE_YUV_2_PACKED2_C\
    type *r, *b, *g;\
    r = (type *)c->table_rV[V];\
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
    b = (type *)c->table_bU[U];\

#define YSCALE_YUV_2_PACKED1_C \
    for (i=0; i<(dstW>>1); i++){\
        const int i2= 2*i;\
        int Y1= buf0[i2  ]>>7;\
        int Y2= buf0[i2+1]>>7;\
        int U= (uvbuf1[i     ])>>7;\
        int V= (uvbuf1[i+2048])>>7;\

#define YSCALE_YUV_2_RGB1_C(type) \
    YSCALE_YUV_2_PACKED1_C\
    type *r, *b, *g;\
    r = (type *)c->table_rV[V];\
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
    b = (type *)c->table_bU[U];\

#define YSCALE_YUV_2_PACKED1B_C \
    for (i=0; i<(dstW>>1); i++){\
        const int i2= 2*i;\
        int Y1= buf0[i2  ]>>7;\
        int Y2= buf0[i2+1]>>7;\
        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\

#define YSCALE_YUV_2_RGB1B_C(type) \
    YSCALE_YUV_2_PACKED1B_C\
    type *r, *b, *g;\
    r = (type *)c->table_rV[V];\
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
    b = (type *)c->table_bU[U];\

#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
    switch(c->dstFormat)\
    {\
    case PIX_FMT_RGB32:\
    case PIX_FMT_BGR32:\
        func(uint32_t)\
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
        }                \
        break;\
    case PIX_FMT_RGB24:\
        func(uint8_t)\
            ((uint8_t*)dest)[0]= r[Y1];\
            ((uint8_t*)dest)[1]= g[Y1];\
            ((uint8_t*)dest)[2]= b[Y1];\
            ((uint8_t*)dest)[3]= r[Y2];\
            ((uint8_t*)dest)[4]= g[Y2];\
            ((uint8_t*)dest)[5]= b[Y2];\
            dest+=6;\
        }\
        break;\
    case PIX_FMT_BGR24:\
        func(uint8_t)\
            ((uint8_t*)dest)[0]= b[Y1];\
            ((uint8_t*)dest)[1]= g[Y1];\
            ((uint8_t*)dest)[2]= r[Y1];\
            ((uint8_t*)dest)[3]= b[Y2];\
            ((uint8_t*)dest)[4]= g[Y2];\
            ((uint8_t*)dest)[5]= r[Y2];\
            dest+=6;\
        }\
        break;\
    case PIX_FMT_RGB565:\
    case PIX_FMT_BGR565:\
        {\
            const int dr1= dither_2x2_8[y&1    ][0];\
            const int dg1= dither_2x2_4[y&1    ][0];\
            const int db1= dither_2x2_8[(y&1)^1][0];\
            const int dr2= dither_2x2_8[y&1    ][1];\
            const int dg2= dither_2x2_4[y&1    ][1];\
            const int db2= dither_2x2_8[(y&1)^1][1];\
            func(uint16_t)\
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
            }\
        }\
        break;\
    case PIX_FMT_RGB555:\
    case PIX_FMT_BGR555:\
        {\
            const int dr1= dither_2x2_8[y&1    ][0];\
            const int dg1= dither_2x2_8[y&1    ][1];\
            const int db1= dither_2x2_8[(y&1)^1][0];\
            const int dr2= dither_2x2_8[y&1    ][1];\
            const int dg2= dither_2x2_8[y&1    ][0];\
            const int db2= dither_2x2_8[(y&1)^1][1];\
            func(uint16_t)\
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
            }\
        }\
        break;\
    case PIX_FMT_RGB8:\
    case PIX_FMT_BGR8:\
        {\
            const uint8_t * const d64= dither_8x8_73[y&7];\
            const uint8_t * const d32= dither_8x8_32[y&7];\
            func(uint8_t)\
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
            }\
        }\
        break;\
    case PIX_FMT_RGB4:\
    case PIX_FMT_BGR4:\
        {\
            const uint8_t * const d64= dither_8x8_73 [y&7];\
            const uint8_t * const d128=dither_8x8_220[y&7];\
            func(uint8_t)\
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
            }\
        }\
        break;\
    case PIX_FMT_RGB4_BYTE:\
    case PIX_FMT_BGR4_BYTE:\
        {\
            const uint8_t * const d64= dither_8x8_73 [y&7];\
            const uint8_t * const d128=dither_8x8_220[y&7];\
            func(uint8_t)\
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
            }\
        }\
        break;\
    case PIX_FMT_MONOBLACK:\
        {\
            const uint8_t * const d128=dither_8x8_220[y&7];\
            uint8_t *g= c->table_gU[128] + c->table_gV[128];\
            for (i=0; i<dstW-7; i+=8){\
                int acc;\
                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
                ((uint8_t*)dest)[0]= acc;\
                dest++;\
            }\
\
/*\
((uint8_t*)dest)-= dstW>>4;\
{\
            int acc=0;\
            int left=0;\
            static int top[1024];\
            static int last_new[1024][1024];\
            static int last_in3[1024][1024];\
            static int drift[1024][1024];\
            int topLeft=0;\
            int shift=0;\
            int count=0;\
            const uint8_t * const d128=dither_8x8_220[y&7];\
            int error_new=0;\
            int error_in3=0;\
            int f=0;\
            \
            for (i=dstW>>1; i<dstW; i++){\
                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
                int in2 = (76309 * (in - 16) + 32768) >> 16;\
                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
                         + (last_new[y][i] - in3)*f/256;\
                int new= old> 128 ? 255 : 0;\
\
                error_new+= FFABS(last_new[y][i] - new);\
                error_in3+= FFABS(last_in3[y][i] - in3);\
                f= error_new - error_in3*4;\
                if (f<0) f=0;\
                if (f>256) f=256;\
\
                topLeft= top[i];\
                left= top[i]= old - new;\
                last_new[y][i]= new;\
                last_in3[y][i]= in3;\
\
                acc+= acc + (new&1);\
                if ((i&7)==6){\
                    ((uint8_t*)dest)[0]= acc;\
                    ((uint8_t*)dest)++;\
                }\
            }\
}\
*/\
        }\
        break;\
    case PIX_FMT_YUYV422:\
        func2\
            ((uint8_t*)dest)[2*i2+0]= Y1;\
            ((uint8_t*)dest)[2*i2+1]= U;\
            ((uint8_t*)dest)[2*i2+2]= Y2;\
            ((uint8_t*)dest)[2*i2+3]= V;\
        }                \
        break;\
    case PIX_FMT_UYVY422:\
        func2\
            ((uint8_t*)dest)[2*i2+0]= U;\
            ((uint8_t*)dest)[2*i2+1]= Y1;\
            ((uint8_t*)dest)[2*i2+2]= V;\
            ((uint8_t*)dest)[2*i2+3]= Y2;\
        }                \
        break;\
    }\


static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                                  int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                                  uint8_t *dest, int dstW, int y)
{
    int i;
    switch(c->dstFormat)
    {
    case PIX_FMT_BGR32:
    case PIX_FMT_RGB32:
        YSCALE_YUV_2_RGBX_C(uint32_t)
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
        }
        break;
    case PIX_FMT_RGB24:
        YSCALE_YUV_2_RGBX_C(uint8_t)
            ((uint8_t*)dest)[0]= r[Y1];
            ((uint8_t*)dest)[1]= g[Y1];
            ((uint8_t*)dest)[2]= b[Y1];
            ((uint8_t*)dest)[3]= r[Y2];
            ((uint8_t*)dest)[4]= g[Y2];
            ((uint8_t*)dest)[5]= b[Y2];
            dest+=6;
        }
        break;
    case PIX_FMT_BGR24:
        YSCALE_YUV_2_RGBX_C(uint8_t)
            ((uint8_t*)dest)[0]= b[Y1];
            ((uint8_t*)dest)[1]= g[Y1];
            ((uint8_t*)dest)[2]= r[Y1];
            ((uint8_t*)dest)[3]= b[Y2];
            ((uint8_t*)dest)[4]= g[Y2];
            ((uint8_t*)dest)[5]= r[Y2];
            dest+=6;
        }
        break;
    case PIX_FMT_RGB565:
    case PIX_FMT_BGR565:
        {
            const int dr1= dither_2x2_8[y&1    ][0];
            const int dg1= dither_2x2_4[y&1    ][0];
            const int db1= dither_2x2_8[(y&1)^1][0];
            const int dr2= dither_2x2_8[y&1    ][1];
            const int dg2= dither_2x2_4[y&1    ][1];
            const int db2= dither_2x2_8[(y&1)^1][1];
            YSCALE_YUV_2_RGBX_C(uint16_t)
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
            }
        }
        break;
    case PIX_FMT_RGB555:
    case PIX_FMT_BGR555:
        {
            const int dr1= dither_2x2_8[y&1    ][0];
            const int dg1= dither_2x2_8[y&1    ][1];
            const int db1= dither_2x2_8[(y&1)^1][0];
            const int dr2= dither_2x2_8[y&1    ][1];
            const int dg2= dither_2x2_8[y&1    ][0];
            const int db2= dither_2x2_8[(y&1)^1][1];
            YSCALE_YUV_2_RGBX_C(uint16_t)
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
            }
        }
        break;
    case PIX_FMT_RGB8:
    case PIX_FMT_BGR8:
        {
            const uint8_t * const d64= dither_8x8_73[y&7];
            const uint8_t * const d32= dither_8x8_32[y&7];
            YSCALE_YUV_2_RGBX_C(uint8_t)
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
            }
        }
        break;
    case PIX_FMT_RGB4:
    case PIX_FMT_BGR4:
        {
            const uint8_t * const d64= dither_8x8_73 [y&7];
            const uint8_t * const d128=dither_8x8_220[y&7];
            YSCALE_YUV_2_RGBX_C(uint8_t)
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
            }
        }
        break;
    case PIX_FMT_RGB4_BYTE:
    case PIX_FMT_BGR4_BYTE:
        {
            const uint8_t * const d64= dither_8x8_73 [y&7];
            const uint8_t * const d128=dither_8x8_220[y&7];
            YSCALE_YUV_2_RGBX_C(uint8_t)
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
            }
        }
        break;
    case PIX_FMT_MONOBLACK:
        {
            const uint8_t * const d128=dither_8x8_220[y&7];
            uint8_t *g= c->table_gU[128] + c->table_gV[128];
            int acc=0;
            for (i=0; i<dstW-1; i+=2){
                int j;
                int Y1=1<<18;
                int Y2=1<<18;

                for (j=0; j<lumFilterSize; j++)
                {
                    Y1 += lumSrc[j][i] * lumFilter[j];
                    Y2 += lumSrc[j][i+1] * lumFilter[j];
                }
                Y1>>=19;
                Y2>>=19;
                if ((Y1|Y2)&256)
                {
                    if (Y1>255)   Y1=255;
                    else if (Y1<0)Y1=0;
                    if (Y2>255)   Y2=255;
                    else if (Y2<0)Y2=0;
                }
                acc+= acc + g[Y1+d128[(i+0)&7]];
                acc+= acc + g[Y2+d128[(i+1)&7]];
                if ((i&7)==6){
                    ((uint8_t*)dest)[0]= acc;
                    dest++;
                }
            }
        }
        break;
    case PIX_FMT_YUYV422:
        YSCALE_YUV_2_PACKEDX_C(void)
            ((uint8_t*)dest)[2*i2+0]= Y1;
            ((uint8_t*)dest)[2*i2+1]= U;
            ((uint8_t*)dest)[2*i2+2]= Y2;
            ((uint8_t*)dest)[2*i2+3]= V;
        }
        break;
    case PIX_FMT_UYVY422:
        YSCALE_YUV_2_PACKEDX_C(void)
            ((uint8_t*)dest)[2*i2+0]= U;
            ((uint8_t*)dest)[2*i2+1]= Y1;
            ((uint8_t*)dest)[2*i2+2]= V;
            ((uint8_t*)dest)[2*i2+3]= Y2;
        }
        break;
    }
}


//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
//Plain C versions
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
#define COMPILE_C
#endif

#ifdef ARCH_POWERPC
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_ALTIVEC
#endif //HAVE_ALTIVEC
#endif //ARCH_POWERPC

#if defined(ARCH_X86)

#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_MMX
#endif

#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_MMX2
#endif

#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_3DNOW
#endif
#endif //ARCH_X86 || ARCH_X86_64

#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW

#ifdef COMPILE_C
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#undef HAVE_ALTIVEC
#define RENAME(a) a ## _C
#include "swscale_template.c"
#endif

#ifdef ARCH_POWERPC
#ifdef COMPILE_ALTIVEC
#undef RENAME
#define HAVE_ALTIVEC
#define RENAME(a) a ## _altivec
#include "swscale_template.c"
#endif
#endif //ARCH_POWERPC

#if defined(ARCH_X86)

//X86 versions
/*
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _X86
#include "swscale_template.c"
*/
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _MMX
#include "swscale_template.c"
#endif

//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#define HAVE_MMX
#define HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _MMX2
#include "swscale_template.c"
#endif

//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#define HAVE_3DNOW
#define RENAME(a) a ## _3DNow
#include "swscale_template.c"
#endif

#endif //ARCH_X86 || ARCH_X86_64

// minor note: the HAVE_xyz is messed up after that line so don't use it

static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
//    printf("%f %f %f %f %f\n", a,b,c,d,dist);
    if (dist<=1.0)      return ((d*dist + c)*dist + b)*dist +a;
    else                return getSplineCoeff(        0.0,
                                             b+ 2.0*c + 3.0*d,
                                                    c + 3.0*d,
                                            -b- 3.0*c - 6.0*d,
                                            dist-1.0);
}

static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
                             int srcW, int dstW, int filterAlign, int one, int flags,
                             SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
    int i;
    int filterSize;
    int filter2Size;
    int minFilterSize;
    double *filter=NULL;
    double *filter2=NULL;
#if defined(ARCH_X86)
    if (flags & SWS_CPU_CAPS_MMX)
        asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
#endif

    // Note the +1 is for the MMXscaler which reads over the end
    *filterPos = av_malloc((dstW+1)*sizeof(int16_t));

    if (FFABS(xInc - 0x10000) <10) // unscaled
    {
        int i;
        filterSize= 1;
        filter= av_malloc(dstW*sizeof(double)*filterSize);
        for (i=0; i<dstW*filterSize; i++) filter[i]=0;

        for (i=0; i<dstW; i++)
        {
            filter[i*filterSize]=1;
            (*filterPos)[i]=i;
        }

    }
    else if (flags&SWS_POINT) // lame looking point sampling mode
    {
        int i;
        int xDstInSrc;
        filterSize= 1;
        filter= av_malloc(dstW*sizeof(double)*filterSize);

        xDstInSrc= xInc/2 - 0x8000;
        for (i=0; i<dstW; i++)
        {
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;

            (*filterPos)[i]= xx;
            filter[i]= 1.0;
            xDstInSrc+= xInc;
        }
    }
    else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
    {
        int i;
        int xDstInSrc;
        if      (flags&SWS_BICUBIC) filterSize= 4;
        else if (flags&SWS_X      ) filterSize= 4;
        else                        filterSize= 2; // SWS_BILINEAR / SWS_AREA
        filter= av_malloc(dstW*sizeof(double)*filterSize);

        xDstInSrc= xInc/2 - 0x8000;
        for (i=0; i<dstW; i++)
        {
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
            int j;

            (*filterPos)[i]= xx;
                //Bilinear upscale / linear interpolate / Area averaging
                for (j=0; j<filterSize; j++)
                {
                    double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
                    double coeff= 1.0 - d;
                    if (coeff<0) coeff=0;
                    filter[i*filterSize + j]= coeff;
                    xx++;
                }
            xDstInSrc+= xInc;
        }
    }
    else
    {
        double xDstInSrc;
        double sizeFactor, filterSizeInSrc;
        const double xInc1= (double)xInc / (double)(1<<16);

        if      (flags&SWS_BICUBIC)      sizeFactor=  4.0;
        else if (flags&SWS_X)            sizeFactor=  8.0;
        else if (flags&SWS_AREA)         sizeFactor=  1.0; //downscale only, for upscale it is bilinear
        else if (flags&SWS_GAUSS)        sizeFactor=  8.0;   // infinite ;)
        else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
        else if (flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
        else if (flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
        else if (flags&SWS_BILINEAR)     sizeFactor=  2.0;
        else {
            sizeFactor= 0.0; //GCC warning killer
            ASSERT(0)
        }

        if (xInc1 <= 1.0)       filterSizeInSrc= sizeFactor; // upscale
        else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;

        filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
        if (filterSize > srcW-2) filterSize=srcW-2;

        filter= av_malloc(dstW*sizeof(double)*filterSize);

        xDstInSrc= xInc1 / 2.0 - 0.5;
        for (i=0; i<dstW; i++)
        {
            int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
            int j;
            (*filterPos)[i]= xx;
            for (j=0; j<filterSize; j++)
            {
                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
                double coeff;
                if (flags & SWS_BICUBIC)
                {
                    double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
                    double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;

                    if (d<1.0)
                        coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
                    else if (d<2.0)
                        coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
                    else
                        coeff=0.0;
                }
/*                else if (flags & SWS_X)
                {
                    double p= param ? param*0.01 : 0.3;
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
                    coeff*= pow(2.0, - p*d*d);
                }*/
                else if (flags & SWS_X)
                {
                    double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;

                    if (d<1.0)
                        coeff = cos(d*PI);
                    else
                        coeff=-1.0;
                    if (coeff<0.0)      coeff= -pow(-coeff, A);
                    else                coeff=  pow( coeff, A);
                    coeff= coeff*0.5 + 0.5;
                }
                else if (flags & SWS_AREA)
                {
                    double srcPixelSize= 1.0/xInc1;
                    if      (d + srcPixelSize/2 < 0.5) coeff= 1.0;
                    else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
                    else coeff=0.0;
                }
                else if (flags & SWS_GAUSS)
                {
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                    coeff = pow(2.0, - p*d*d);
                }
                else if (flags & SWS_SINC)
                {
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
                }
                else if (flags & SWS_LANCZOS)
                {
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                    coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
                    if (d>p) coeff=0;
                }
                else if (flags & SWS_BILINEAR)
                {
                    coeff= 1.0 - d;
                    if (coeff<0) coeff=0;
                }
                else if (flags & SWS_SPLINE)
                {
                    double p=-2.196152422706632;
                    coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
                }
                else {
                    coeff= 0.0; //GCC warning killer
                    ASSERT(0)
                }

                filter[i*filterSize + j]= coeff;
                xx++;
            }
            xDstInSrc+= xInc1;
        }
    }

    /* apply src & dst Filter to filter -> filter2
       av_free(filter);
    */
    ASSERT(filterSize>0)
    filter2Size= filterSize;
    if (srcFilter) filter2Size+= srcFilter->length - 1;
    if (dstFilter) filter2Size+= dstFilter->length - 1;
    ASSERT(filter2Size>0)
    filter2= av_malloc(filter2Size*dstW*sizeof(double));

    for (i=0; i<dstW; i++)
    {
        int j;
        SwsVector scaleFilter;
        SwsVector *outVec;

        scaleFilter.coeff= filter + i*filterSize;
        scaleFilter.length= filterSize;

        if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
        else           outVec= &scaleFilter;

        ASSERT(outVec->length == filter2Size)
        //FIXME dstFilter

        for (j=0; j<outVec->length; j++)
        {
            filter2[i*filter2Size + j]= outVec->coeff[j];
        }

        (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;

        if (outVec != &scaleFilter) sws_freeVec(outVec);
    }
    av_free(filter); filter=NULL;

    /* try to reduce the filter-size (step1 find size and shift left) */
    // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
    minFilterSize= 0;
    for (i=dstW-1; i>=0; i--)
    {
        int min= filter2Size;
        int j;
        double cutOff=0.0;

        /* get rid off near zero elements on the left by shifting left */
        for (j=0; j<filter2Size; j++)
        {
            int k;
            cutOff += FFABS(filter2[i*filter2Size]);

            if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;

            /* preserve monotonicity because the core can't handle the filter otherwise */
            if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;

            // Move filter coeffs left
            for (k=1; k<filter2Size; k++)
                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
            filter2[i*filter2Size + k - 1]= 0.0;
            (*filterPos)[i]++;
        }

        cutOff=0.0;
        /* count near zeros on the right */
        for (j=filter2Size-1; j>0; j--)
        {
            cutOff += FFABS(filter2[i*filter2Size + j]);

            if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
            min--;
        }

        if (min>minFilterSize) minFilterSize= min;
    }

    if (flags & SWS_CPU_CAPS_ALTIVEC) {
        // we can handle the special case 4,
        // so we don't want to go to the full 8
        if (minFilterSize < 5)
            filterAlign = 4;

        // we really don't want to waste our time
        // doing useless computation, so fall-back on
        // the scalar C code for very small filter.
        // vectorizing is worth it only if you have
        // decent-sized vector.
        if (minFilterSize < 3)
            filterAlign = 1;
    }

    if (flags & SWS_CPU_CAPS_MMX) {
        // special case for unscaled vertical filtering
        if (minFilterSize == 1 && filterAlign == 2)
            filterAlign= 1;
    }

    ASSERT(minFilterSize > 0)
    filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
    ASSERT(filterSize > 0)
    filter= av_malloc(filterSize*dstW*sizeof(double));
    if (filterSize >= MAX_FILTER_SIZE)
        return -1;
    *outFilterSize= filterSize;

    if (flags&SWS_PRINT_INFO)
        av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
    /* try to reduce the filter-size (step2 reduce it) */
    for (i=0; i<dstW; i++)
    {
        int j;

        for (j=0; j<filterSize; j++)
        {
            if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
            else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
        }
    }
    av_free(filter2); filter2=NULL;


    //FIXME try to align filterpos if possible

    //fix borders
    for (i=0; i<dstW; i++)
    {
        int j;
        if ((*filterPos)[i] < 0)
        {
            // Move filter coeffs left to compensate for filterPos
            for (j=1; j<filterSize; j++)
            {
                int left= FFMAX(j + (*filterPos)[i], 0);
                filter[i*filterSize + left] += filter[i*filterSize + j];
                filter[i*filterSize + j]=0;
            }
            (*filterPos)[i]= 0;
        }

        if ((*filterPos)[i] + filterSize > srcW)
        {
            int shift= (*filterPos)[i] + filterSize - srcW;
            // Move filter coeffs right to compensate for filterPos
            for (j=filterSize-2; j>=0; j--)
            {
                int right= FFMIN(j + shift, filterSize-1);
                filter[i*filterSize +right] += filter[i*filterSize +j];
                filter[i*filterSize +j]=0;
            }
            (*filterPos)[i]= srcW - filterSize;
        }
    }

    // Note the +1 is for the MMXscaler which reads over the end
    /* align at 16 for AltiVec (needed by hScale_altivec_real) */
    *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));

    /* Normalize & Store in outFilter */
    for (i=0; i<dstW; i++)
    {
        int j;
        double error=0;
        double sum=0;
        double scale= one;

        for (j=0; j<filterSize; j++)
        {
            sum+= filter[i*filterSize + j];
        }
        scale/= sum;
        for (j=0; j<*outFilterSize; j++)
        {
            double v= filter[i*filterSize + j]*scale + error;
            int intV= floor(v + 0.5);
            (*outFilter)[i*(*outFilterSize) + j]= intV;
            error = v - intV;
        }
    }

    (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
    for (i=0; i<*outFilterSize; i++)
    {
        int j= dstW*(*outFilterSize);
        (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
    }

    av_free(filter);
    return 0;
}

#ifdef COMPILE_MMX2
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
    uint8_t *fragmentA;
    long imm8OfPShufW1A;
    long imm8OfPShufW2A;
    long fragmentLengthA;
    uint8_t *fragmentB;
    long imm8OfPShufW1B;
    long imm8OfPShufW2B;
    long fragmentLengthB;
    int fragmentPos;

    int xpos, i;

    // create an optimized horizontal scaling routine

    //code fragment

    asm volatile(
        "jmp                         9f                 \n\t"
    // Begin
        "0:                                             \n\t"
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
        "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
        "punpcklbw                %%mm7, %%mm1          \n\t"
        "punpcklbw                %%mm7, %%mm0          \n\t"
        "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
        "1:                                             \n\t"
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
        "2:                                             \n\t"
        "psubw                    %%mm1, %%mm0          \n\t"
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
        "pmullw                   %%mm3, %%mm0          \n\t"
        "psllw                       $7, %%mm1          \n\t"
        "paddw                    %%mm1, %%mm0          \n\t"

        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"

        "add                         $8, %%"REG_a"      \n\t"
    // End
        "9:                                             \n\t"
//        "int $3                                         \n\t"
        "lea                         0b, %0             \n\t"
        "lea                         1b, %1             \n\t"
        "lea                         2b, %2             \n\t"
        "dec                         %1                 \n\t"
        "dec                         %2                 \n\t"
        "sub                         %0, %1             \n\t"
        "sub                         %0, %2             \n\t"
        "lea                         9b, %3             \n\t"
        "sub                         %0, %3             \n\t"


        :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
        "=r" (fragmentLengthA)
    );

    asm volatile(
        "jmp                         9f                 \n\t"
    // Begin
        "0:                                             \n\t"
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
        "punpcklbw                %%mm7, %%mm0          \n\t"
        "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
        "1:                                             \n\t"
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
        "2:                                             \n\t"
        "psubw                    %%mm1, %%mm0          \n\t"
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
        "pmullw                   %%mm3, %%mm0          \n\t"
        "psllw                       $7, %%mm1          \n\t"
        "paddw                    %%mm1, %%mm0          \n\t"

        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"

        "add                         $8, %%"REG_a"      \n\t"
    // End
        "9:                                             \n\t"
//        "int                       $3                   \n\t"
        "lea                         0b, %0             \n\t"
        "lea                         1b, %1             \n\t"
        "lea                         2b, %2             \n\t"
        "dec                         %1                 \n\t"
        "dec                         %2                 \n\t"
        "sub                         %0, %1             \n\t"
        "sub                         %0, %2             \n\t"
        "lea                         9b, %3             \n\t"
        "sub                         %0, %3             \n\t"


        :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
        "=r" (fragmentLengthB)
    );

    xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
    fragmentPos=0;

    for (i=0; i<dstW/numSplits; i++)
    {
        int xx=xpos>>16;

        if ((i&3) == 0)
        {
            int a=0;
            int b=((xpos+xInc)>>16) - xx;
            int c=((xpos+xInc*2)>>16) - xx;
            int d=((xpos+xInc*3)>>16) - xx;

            filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
            filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
            filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
            filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
            filterPos[i/2]= xx;

            if (d+1<4)
            {
                int maxShift= 3-(d+1);
                int shift=0;

                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);

                funnyCode[fragmentPos + imm8OfPShufW1B]=
                    (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
                funnyCode[fragmentPos + imm8OfPShufW2B]=
                    a | (b<<2) | (c<<4) | (d<<6);

                if (i+3>=dstW) shift=maxShift; //avoid overread
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align

                if (shift && i>=shift)
                {
                    funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
                    funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
                    filterPos[i/2]-=shift;
                }

                fragmentPos+= fragmentLengthB;
            }
            else
            {
                int maxShift= 3-d;
                int shift=0;

                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);

                funnyCode[fragmentPos + imm8OfPShufW1A]=
                funnyCode[fragmentPos + imm8OfPShufW2A]=
                    a | (b<<2) | (c<<4) | (d<<6);

                if (i+4>=dstW) shift=maxShift; //avoid overread
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align

                if (shift && i>=shift)
                {
                    funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
                    funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
                    filterPos[i/2]-=shift;
                }

                fragmentPos+= fragmentLengthA;
            }

            funnyCode[fragmentPos]= RET;
        }
        xpos+=xInc;
    }
    filterPos[i/2]= xpos>>16; // needed to jump to the next part
}
#endif /* COMPILE_MMX2 */

static void globalInit(void){
    // generating tables:
    int i;
    for (i=0; i<768; i++){
        int c= av_clip_uint8(i-256);
        clip_table[i]=c;
    }
}

static SwsFunc getSwsFunc(int flags){

#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
#if defined(ARCH_X86)
    // ordered per speed fastest first
    if (flags & SWS_CPU_CAPS_MMX2)
        return swScale_MMX2;
    else if (flags & SWS_CPU_CAPS_3DNOW)
        return swScale_3DNow;
    else if (flags & SWS_CPU_CAPS_MMX)
        return swScale_MMX;
    else
        return swScale_C;

#else
#ifdef ARCH_POWERPC
    if (flags & SWS_CPU_CAPS_ALTIVEC)
        return swScale_altivec;
    else
        return swScale_C;
#endif
    return swScale_C;
#endif /* defined(ARCH_X86) */
#else //RUNTIME_CPUDETECT
#ifdef HAVE_MMX2
    return swScale_MMX2;
#elif defined (HAVE_3DNOW)
    return swScale_3DNow;
#elif defined (HAVE_MMX)
    return swScale_MMX;
#elif defined (HAVE_ALTIVEC)
    return swScale_altivec;
#else
    return swScale_C;
#endif
#endif //!RUNTIME_CPUDETECT
}

static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
    /* Copy Y plane */
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
        memcpy(dst, src[0], srcSliceH*dstStride[0]);
    else
    {
        int i;
        uint8_t *srcPtr= src[0];
        uint8_t *dstPtr= dst;
        for (i=0; i<srcSliceH; i++)
        {
            memcpy(dstPtr, srcPtr, c->srcW);
            srcPtr+= srcStride[0];
            dstPtr+= dstStride[0];
        }
    }
    dst = dstParam[1] + dstStride[1]*srcSliceY/2;
    if (c->dstFormat == PIX_FMT_NV12)
        interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
    else
        interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);

    return srcSliceH;
}

static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;

    yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);

    return srcSliceH;
}

static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;

    yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);

    return srcSliceH;
}

/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                          int srcSliceH, uint8_t* dst[], int dstStride[]){
    const int srcFormat= c->srcFormat;
    const int dstFormat= c->dstFormat;
    const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
    const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
    const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
    const int dstId= fmt_depth(dstFormat) >> 2;
    void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;

    /* BGR -> BGR */
    if (  (isBGR(srcFormat) && isBGR(dstFormat))
       || (isRGB(srcFormat) && isRGB(dstFormat))){
        switch(srcId | (dstId<<4)){
        case 0x34: conv= rgb16to15; break;
        case 0x36: conv= rgb24to15; break;
        case 0x38: conv= rgb32to15; break;
        case 0x43: conv= rgb15to16; break;
        case 0x46: conv= rgb24to16; break;
        case 0x48: conv= rgb32to16; break;
        case 0x63: conv= rgb15to24; break;
        case 0x64: conv= rgb16to24; break;
        case 0x68: conv= rgb32to24; break;
        case 0x83: conv= rgb15to32; break;
        case 0x84: conv= rgb16to32; break;
        case 0x86: conv= rgb24to32; break;
        default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
        }
    }else if (  (isBGR(srcFormat) && isRGB(dstFormat))
             || (isRGB(srcFormat) && isBGR(dstFormat))){
        switch(srcId | (dstId<<4)){
        case 0x33: conv= rgb15tobgr15; break;
        case 0x34: conv= rgb16tobgr15; break;
        case 0x36: conv= rgb24tobgr15; break;
        case 0x38: conv= rgb32tobgr15; break;
        case 0x43: conv= rgb15tobgr16; break;
        case 0x44: conv= rgb16tobgr16; break;
        case 0x46: conv= rgb24tobgr16; break;
        case 0x48: conv= rgb32tobgr16; break;
        case 0x63: conv= rgb15tobgr24; break;
        case 0x64: conv= rgb16tobgr24; break;
        case 0x66: conv= rgb24tobgr24; break;
        case 0x68: conv= rgb32tobgr24; break;
        case 0x83: conv= rgb15tobgr32; break;
        case 0x84: conv= rgb16tobgr32; break;
        case 0x86: conv= rgb24tobgr32; break;
        case 0x88: conv= rgb32tobgr32; break;
        default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
        }
    }else{
        av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
               sws_format_name(srcFormat), sws_format_name(dstFormat));
    }

    if(conv)
    {
        if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
            conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
        else
        {
            int i;
            uint8_t *srcPtr= src[0];
            uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;

            for (i=0; i<srcSliceH; i++)
            {
                conv(srcPtr, dstPtr, c->srcW*srcBpp);
                srcPtr+= srcStride[0];
                dstPtr+= dstStride[0];
            }
        }
    }
    return srcSliceH;
}

static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                              int srcSliceH, uint8_t* dst[], int dstStride[]){

    rgb24toyv12(
        src[0],
        dst[0]+ srcSliceY    *dstStride[0],
        dst[1]+(srcSliceY>>1)*dstStride[1],
        dst[2]+(srcSliceY>>1)*dstStride[2],
        c->srcW, srcSliceH,
        dstStride[0], dstStride[1], srcStride[0]);
    return srcSliceH;
}

static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                             int srcSliceH, uint8_t* dst[], int dstStride[]){
    int i;

    /* copy Y */
    if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
        memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
    else{
        uint8_t *srcPtr= src[0];
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;

        for (i=0; i<srcSliceH; i++)
        {
            memcpy(dstPtr, srcPtr, c->srcW);
            srcPtr+= srcStride[0];
            dstPtr+= dstStride[0];
        }
    }

    if (c->dstFormat==PIX_FMT_YUV420P){
        planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
        planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
    }else{
        planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
        planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
    }
    return srcSliceH;
}

/* unscaled copy like stuff (assumes nearly identical formats) */
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[]){

    if (isPacked(c->srcFormat))
    {
        if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
            memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
        else
        {
            int i;
            uint8_t *srcPtr= src[0];
            uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
            int length=0;

            /* universal length finder */
            while(length+c->srcW <= FFABS(dstStride[0])
               && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
            ASSERT(length!=0);

            for (i=0; i<srcSliceH; i++)
            {
                memcpy(dstPtr, srcPtr, length);
                srcPtr+= srcStride[0];
                dstPtr+= dstStride[0];
            }
        }
    }
    else
    { /* Planar YUV or gray */
        int plane;
        for (plane=0; plane<3; plane++)
        {
            int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
            int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
            int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);

            if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
            {
                if (!isGray(c->dstFormat))
                    memset(dst[plane], 128, dstStride[plane]*height);
            }
            else
            {
                if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
                    memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
                else
                {
                    int i;
                    uint8_t *srcPtr= src[plane];
                    uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
                    for (i=0; i<height; i++)
                    {
                        memcpy(dstPtr, srcPtr, length);
                        srcPtr+= srcStride[plane];
                        dstPtr+= dstStride[plane];
                    }
                }
            }
        }
    }
    return srcSliceH;
}

static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                        int srcSliceH, uint8_t* dst[], int dstStride[]){

    int length= c->srcW;
    int y=      srcSliceY;
    int height= srcSliceH;
    int i, j;
    uint8_t *srcPtr= src[0];
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;

    if (!isGray(c->dstFormat)){
        int height= -((-srcSliceH)>>c->chrDstVSubSample);
        memset(dst[1], 128, dstStride[1]*height);
        memset(dst[2], 128, dstStride[2]*height);
    }
    if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
    for (i=0; i<height; i++)
    {
        for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
        srcPtr+= srcStride[0];
        dstPtr+= dstStride[0];
    }
    return srcSliceH;
}

static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                        int srcSliceH, uint8_t* dst[], int dstStride[]){

    int length= c->srcW;
    int y=      srcSliceY;
    int height= srcSliceH;
    int i, j;
    uint8_t *srcPtr= src[0];
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;
    for (i=0; i<height; i++)
    {
        for (j=0; j<length; j++)
        {
            dstPtr[j<<1] = srcPtr[j];
            dstPtr[(j<<1)+1] = srcPtr[j];
        }
        srcPtr+= srcStride[0];
        dstPtr+= dstStride[0];
    }
    return srcSliceH;
}

static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[]){

    int length= c->srcW;
    int y=      srcSliceY;
    int height= srcSliceH;
    int i, j;
    uint16_t *srcPtr= src[0];
    uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
    for (i=0; i<height; i++)
    {
        for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
        srcPtr+= srcStride[0]/2;
        dstPtr+= dstStride[0]/2;
    }
    return srcSliceH;
}


static void getSubSampleFactors(int *h, int *v, int format){
    switch(format){
    case PIX_FMT_UYVY422:
    case PIX_FMT_YUYV422:
        *h=1;
        *v=0;
        break;
    case PIX_FMT_YUV420P:
    case PIX_FMT_YUVA420P:
    case PIX_FMT_GRAY16BE:
    case PIX_FMT_GRAY16LE:
    case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
    case PIX_FMT_NV12:
01888     case PIX_FMT_NV21:
        *h=1;
        *v=1;
        break;
    case PIX_FMT_YUV440P:
        *h=0;
        *v=1;
        break;
    case PIX_FMT_YUV410P:
        *h=2;
        *v=2;
        break;
    case PIX_FMT_YUV444P:
        *h=0;
        *v=0;
        break;
    case PIX_FMT_YUV422P:
        *h=1;
        *v=0;
        break;
    case PIX_FMT_YUV411P:
        *h=2;
        *v=0;
        break;
    default:
        *h=0;
        *v=0;
        break;
    }
}

static uint16_t roundToInt16(int64_t f){
    int r= (f + (1<<15))>>16;
         if (r<-0x7FFF) return 0x8000;
    else if (r> 0x7FFF) return 0x7FFF;
    else                return r;
}

/**
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
 * @return -1 if not supported
 */
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
    int64_t crv =  inv_table[0];
    int64_t cbu =  inv_table[1];
    int64_t cgu = -inv_table[2];
    int64_t cgv = -inv_table[3];
    int64_t cy  = 1<<16;
    int64_t oy  = 0;

    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
    memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
    memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);

    c->brightness= brightness;
    c->contrast  = contrast;
    c->saturation= saturation;
    c->srcRange  = srcRange;
01947     c->dstRange  = dstRange;

    c->uOffset=   0x0400040004000400LL;
    c->vOffset=   0x0400040004000400LL;

    if (!srcRange){
        cy= (cy*255) / 219;
        oy= 16<<16;
    }else{
        crv= (crv*224) / 255;
        cbu= (cbu*224) / 255;
        cgu= (cgu*224) / 255;
        cgv= (cgv*224) / 255;
    }

    cy = (cy *contrast             )>>16;
    crv= (crv*contrast * saturation)>>32;
    cbu= (cbu*contrast * saturation)>>32;
    cgu= (cgu*contrast * saturation)>>32;
    cgv= (cgv*contrast * saturation)>>32;

    oy -= 256*brightness;

    c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
    c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
    c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
    c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
    c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
    c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;

    yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
    //FIXME factorize

#ifdef COMPILE_ALTIVEC
    if (c->flags & SWS_CPU_CAPS_ALTIVEC)
        yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
#endif
    return 0;
}

/**
 * @return -1 if not supported
 */
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;

    *inv_table = c->srcColorspaceTable;
    *table     = c->dstColorspaceTable;
    *srcRange  = c->srcRange;
    *dstRange  = c->dstRange;
    *brightness= c->brightness;
    *contrast  = c->contrast;
    *saturation= c->saturation;

    return 0;
}

static int handle_jpeg(int *format)
{
    switch (*format) {
        case PIX_FMT_YUVJ420P:
            *format = PIX_FMT_YUV420P;
            return 1;
        case PIX_FMT_YUVJ422P:
            *format = PIX_FMT_YUV422P;
            return 1;
        case PIX_FMT_YUVJ444P:
            *format = PIX_FMT_YUV444P;
            return 1;
        case PIX_FMT_YUVJ440P:
            *format = PIX_FMT_YUV440P;
            return 1;
        default:
            return 0;
    }
}

SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
                           SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){

    SwsContext *c;
    int i;
    int usesVFilter, usesHFilter;
    int unscaled, needsDither;
    int srcRange, dstRange;
    SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#if defined(ARCH_X86)
    if (flags & SWS_CPU_CAPS_MMX)
        asm volatile("emms\n\t"::: "memory");
#endif

#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
    flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
#ifdef HAVE_MMX2
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
#elif defined (HAVE_3DNOW)
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
#elif defined (HAVE_MMX)
    flags |= SWS_CPU_CAPS_MMX;
#elif defined (HAVE_ALTIVEC)
    flags |= SWS_CPU_CAPS_ALTIVEC;
#elif defined (ARCH_BFIN)
    flags |= SWS_CPU_CAPS_BFIN;
#endif
#endif /* RUNTIME_CPUDETECT */
    if (clip_table[512] != 255) globalInit();
    if (!rgb15to16) sws_rgb2rgb_init(flags);

    unscaled = (srcW == dstW && srcH == dstH);
    needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
        && (fmt_depth(dstFormat))<24
        && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));

    srcRange = handle_jpeg(&srcFormat);
    dstRange = handle_jpeg(&dstFormat);

    if (!isSupportedIn(srcFormat))
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
        return NULL;
    }
    if (!isSupportedOut(dstFormat))
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
        return NULL;
    }

    /* sanity check */
    if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
               srcW, srcH, dstW, dstH);
        return NULL;
    }

    if (!dstFilter) dstFilter= &dummyFilter;
    if (!srcFilter) srcFilter= &dummyFilter;

    c= av_mallocz(sizeof(SwsContext));

    c->av_class = &sws_context_class;
    c->srcW= srcW;
    c->srcH= srcH;
    c->dstW= dstW;
    c->dstH= dstH;
    c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
    c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
    c->flags= flags;
    c->dstFormat= dstFormat;
    c->srcFormat= srcFormat;
    c->vRounder= 4* 0x0001000100010001ULL;

    usesHFilter= usesVFilter= 0;
    if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
    if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
    if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
    if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
    if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
    if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
    if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
    if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;

    getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
    getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);

    // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
    if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;

    // drop some chroma lines if the user wants it
    c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
    c->chrSrcVSubSample+= c->vChrDrop;

    // drop every 2. pixel for chroma calculation unless user wants full chroma
    if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
      && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
      && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
      && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
        c->chrSrcHSubSample=1;

    if (param){
        c->param[0] = param[0];
        c->param[1] = param[1];
    }else{
        c->param[0] =
        c->param[1] = SWS_PARAM_DEFAULT;
    }

    c->chrIntHSubSample= c->chrDstHSubSample;
    c->chrIntVSubSample= c->chrSrcVSubSample;

    // Note the -((-x)>>y) is so that we always round toward +inf.
    c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
    c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
    c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
    c->chrDstH= -((-dstH) >> c->chrDstVSubSample);

    sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);

    /* unscaled special Cases */
    if (unscaled && !usesHFilter && !usesVFilter)
    {
        /* yv12_to_nv12 */
        if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
        {
            c->swScale= PlanarToNV12Wrapper;
        }
#ifdef CONFIG_GPL
        /* yuv2bgr */
        if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
        {
            c->swScale= yuv2rgb_get_func_ptr(c);
        }
#endif

        if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P)
        {
            c->swScale= yvu9toyv12Wrapper;
        }

        /* bgr24toYV12 */
        if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
            c->swScale= bgr24toyv12Wrapper;

        /* rgb/bgr -> rgb/bgr (no dither needed forms) */
        if (  (isBGR(srcFormat) || isRGB(srcFormat))
           && (isBGR(dstFormat) || isRGB(dstFormat))
           && srcFormat != PIX_FMT_BGR8      && dstFormat != PIX_FMT_BGR8
           && srcFormat != PIX_FMT_RGB8      && dstFormat != PIX_FMT_RGB8
           && srcFormat != PIX_FMT_BGR4      && dstFormat != PIX_FMT_BGR4
           && srcFormat != PIX_FMT_RGB4      && dstFormat != PIX_FMT_RGB4
           && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
           && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
           && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
           && !needsDither)
             c->swScale= rgb2rgbWrapper;

        /* LQ converters if -sws 0 or -sws 4*/
        if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
            /* rgb/bgr -> rgb/bgr (dither needed forms) */
            if ( (isBGR(srcFormat) || isRGB(srcFormat))
              && (isBGR(dstFormat) || isRGB(dstFormat))
              && needsDither)
                c->swScale= rgb2rgbWrapper;

            /* yv12_to_yuy2 */
            if (srcFormat == PIX_FMT_YUV420P &&
                (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
            {
                if (dstFormat == PIX_FMT_YUYV422)
                    c->swScale= PlanarToYuy2Wrapper;
                else
                    c->swScale= PlanarToUyvyWrapper;
            }
        }

#ifdef COMPILE_ALTIVEC
        if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
            ((srcFormat == PIX_FMT_YUV420P &&
             (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
          // unscaled YV12 -> packed YUV, we want speed
          if (dstFormat == PIX_FMT_YUYV422)
              c->swScale= yv12toyuy2_unscaled_altivec;
          else
              c->swScale= yv12touyvy_unscaled_altivec;
        }
#endif

        /* simple copy */
        if (  srcFormat == dstFormat
            || (isPlanarYUV(srcFormat) && isGray(dstFormat))
            || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
        {
            c->swScale= simpleCopy;
        }

        /* gray16{le,be} conversions */
        if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
        {
            c->swScale= gray16togray;
        }
        if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
        {
            c->swScale= graytogray16;
        }
        if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
        {
            c->swScale= gray16swap;
        }

#ifdef ARCH_BFIN
        if (flags & SWS_CPU_CAPS_BFIN)
            ff_bfin_get_unscaled_swscale (c);
#endif

        if (c->swScale){
            if (flags&SWS_PRINT_INFO)
                av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
            return c;
        }
    }

    if (flags & SWS_CPU_CAPS_MMX2)
    {
        c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
        if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
        {
            if (flags&SWS_PRINT_INFO)
                av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
        }
        if (usesHFilter) c->canMMX2BeUsed=0;
    }
    else
        c->canMMX2BeUsed=0;

    c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
    c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;

    // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
    // but only for the FAST_BILINEAR mode otherwise do correct scaling
    // n-2 is the last chrominance sample available
    // this is not perfect, but no one should notice the difference, the more correct variant
    // would be like the vertical one, but that would require some special code for the
    // first and last pixel
    if (flags&SWS_FAST_BILINEAR)
    {
        if (c->canMMX2BeUsed)
        {
            c->lumXInc+= 20;
            c->chrXInc+= 20;
        }
        //we don't use the x86asm scaler if mmx is available
        else if (flags & SWS_CPU_CAPS_MMX)
        {
            c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
            c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
        }
    }

    /* precalculate horizontal scaler filter coefficients */
    {
        const int filterAlign=
            (flags & SWS_CPU_CAPS_MMX) ? 4 :
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
            1;

        initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
                   srcW      ,       dstW, filterAlign, 1<<14,
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
                   srcFilter->lumH, dstFilter->lumH, c->param);
        initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
                   c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
                   srcFilter->chrH, dstFilter->chrH, c->param);

#define MAX_FUNNY_CODE_SIZE 10000
#if defined(COMPILE_MMX2)
// can't downscale !!!
        if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
        {
#ifdef MAP_ANONYMOUS
            c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
            c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#else
            c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
            c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
#endif

            c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
            c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
            c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
            c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));

            initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
            initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
        }
#endif /* defined(COMPILE_MMX2) */
    } // Init Horizontal stuff



    /* precalculate vertical scaler filter coefficients */
    {
        const int filterAlign=
            (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
            1;

        initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
                   srcH      ,        dstH, filterAlign, (1<<12)-4,
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
                   srcFilter->lumV, dstFilter->lumV, c->param);
        initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
                   c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
                   srcFilter->chrV, dstFilter->chrV, c->param);

#ifdef HAVE_ALTIVEC
        c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
        c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);

        for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
            int j;
            short *p = (short *)&c->vYCoeffsBank[i];
            for (j=0;j<8;j++)
                p[j] = c->vLumFilter[i];
        }

        for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
            int j;
            short *p = (short *)&c->vCCoeffsBank[i];
            for (j=0;j<8;j++)
                p[j] = c->vChrFilter[i];
        }
#endif
    }

    // Calculate Buffer Sizes so that they won't run out while handling these damn slices
    c->vLumBufSize= c->vLumFilterSize;
    c->vChrBufSize= c->vChrFilterSize;
    for (i=0; i<dstH; i++)
    {
        int chrI= i*c->chrDstH / dstH;
        int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
                           ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));

        nextSlice>>= c->chrSrcVSubSample;
        nextSlice<<= c->chrSrcVSubSample;
        if (c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
            c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
        if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
            c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
    }

    // allocate pixbufs (we use dynamic allocation because otherwise we would need to
    c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
    c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
    //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
    /* align at 16 bytes for AltiVec */
    for (i=0; i<c->vLumBufSize; i++)
        c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
    for (i=0; i<c->vChrBufSize; i++)
        c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);

    //try to avoid drawing green stuff between the right end and the stride end
    for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);

    ASSERT(c->chrDstH <= dstH)

    if (flags&SWS_PRINT_INFO)
    {
#ifdef DITHER1XBPP
        char *dither= " dithered";
#else
        char *dither= "";
#endif
        if (flags&SWS_FAST_BILINEAR)
            av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
        else if (flags&SWS_BILINEAR)
            av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
        else if (flags&SWS_BICUBIC)
            av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
        else if (flags&SWS_X)
            av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
        else if (flags&SWS_POINT)
            av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
        else if (flags&SWS_AREA)
            av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
        else if (flags&SWS_BICUBLIN)
            av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
        else if (flags&SWS_GAUSS)
            av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
        else if (flags&SWS_SINC)
            av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
        else if (flags&SWS_LANCZOS)
            av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
        else if (flags&SWS_SPLINE)
            av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
        else
            av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");

        if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
            av_log(c, AV_LOG_INFO, "from %s to%s %s ",
                   sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
        else
            av_log(c, AV_LOG_INFO, "from %s to %s ",
                   sws_format_name(srcFormat), sws_format_name(dstFormat));

        if (flags & SWS_CPU_CAPS_MMX2)
            av_log(c, AV_LOG_INFO, "using MMX2\n");
        else if (flags & SWS_CPU_CAPS_3DNOW)
            av_log(c, AV_LOG_INFO, "using 3DNOW\n");
        else if (flags & SWS_CPU_CAPS_MMX)
            av_log(c, AV_LOG_INFO, "using MMX\n");
        else if (flags & SWS_CPU_CAPS_ALTIVEC)
            av_log(c, AV_LOG_INFO, "using AltiVec\n");
        else
            av_log(c, AV_LOG_INFO, "using C\n");
    }

    if (flags & SWS_PRINT_INFO)
    {
        if (flags & SWS_CPU_CAPS_MMX)
        {
            if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
            else
            {
                if (c->hLumFilterSize==4)
                    av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
                else if (c->hLumFilterSize==8)
                    av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
                else
                    av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");

                if (c->hChrFilterSize==4)
                    av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
                else if (c->hChrFilterSize==8)
                    av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
                else
                    av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
            }
        }
        else
        {
#if defined(ARCH_X86)
            av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
#else
            if (flags & SWS_FAST_BILINEAR)
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
            else
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
#endif
        }
        if (isPlanarYUV(dstFormat))
        {
            if (c->vLumFilterSize==1)
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
            else
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        }
        else
        {
            if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
            else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
            else
                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        }

        if (dstFormat==PIX_FMT_BGR24)
            av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
                   (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
        else if (dstFormat==PIX_FMT_RGB32)
            av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        else if (dstFormat==PIX_FMT_BGR565)
            av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        else if (dstFormat==PIX_FMT_BGR555)
            av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");

        av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
    }
    if (flags & SWS_PRINT_INFO)
    {
        av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
               c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
        av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
               c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
    }

    c->swScale= getSwsFunc(flags);
    return c;
}

/**
 * swscale wrapper, so we don't need to export the SwsContext.
 * assumes planar YUV to be in YUV order instead of YVU
 */
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
              int srcSliceH, uint8_t* dst[], int dstStride[]){
    int i;
    uint8_t* src2[4]= {src[0], src[1], src[2]};
    uint32_t pal[256];
    if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
        av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
        return 0;
    }
    if (c->sliceDir == 0) {
02537         if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
    }

    if (c->srcFormat == PIX_FMT_PAL8){
        for (i=0; i<256; i++){
            int p= ((uint32_t*)(src[1]))[i];
            int r= (p>>16)&0xFF;
            int g= (p>> 8)&0xFF;
            int b=  p     &0xFF;
            int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
            int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
            int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
            pal[i]= y + (u<<8) + (v<<16);
        }
        src2[1]= pal;
    }

    // copy strides, so they can safely be modified
    if (c->sliceDir == 1) {
        // slices go from top to bottom
        int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
        int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
        return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
    } else {
        // slices go from bottom to top => we flip the image internally
        uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
                           dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
                           dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
        int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
        int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};

        src2[0] += (srcSliceH-1)*srcStride[0];
        if (c->srcFormat != PIX_FMT_PAL8)
            src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
        src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];

        return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
    }
}

/**
 * swscale wrapper, so we don't need to export the SwsContext
 */
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[]){
    return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
}

SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
                                float lumaSharpen, float chromaSharpen,
                                float chromaHShift, float chromaVShift,
                                int verbose)
{
    SwsFilter *filter= av_malloc(sizeof(SwsFilter));

    if (lumaGBlur!=0.0){
        filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
        filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
    }else{
        filter->lumH= sws_getIdentityVec();
        filter->lumV= sws_getIdentityVec();
    }

    if (chromaGBlur!=0.0){
        filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
        filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
    }else{
02604         filter->chrH= sws_getIdentityVec();
        filter->chrV= sws_getIdentityVec();
    }

    if (chromaSharpen!=0.0){
        SwsVector *id= sws_getIdentityVec();
        sws_scaleVec(filter->chrH, -chromaSharpen);
        sws_scaleVec(filter->chrV, -chromaSharpen);
        sws_addVec(filter->chrH, id);
        sws_addVec(filter->chrV, id);
        sws_freeVec(id);
    }

    if (lumaSharpen!=0.0){
        SwsVector *id= sws_getIdentityVec();
        sws_scaleVec(filter->lumH, -lumaSharpen);
        sws_scaleVec(filter->lumV, -lumaSharpen);
        sws_addVec(filter->lumH, id);
        sws_addVec(filter->lumV, id);
        sws_freeVec(id);
    }

    if (chromaHShift != 0.0)
        sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));

    if (chromaVShift != 0.0)
        sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));

    sws_normalizeVec(filter->chrH, 1.0);
    sws_normalizeVec(filter->chrV, 1.0);
    sws_normalizeVec(filter->lumH, 1.0);
    sws_normalizeVec(filter->lumV, 1.0);

    if (verbose) sws_printVec(filter->chrH);
    if (verbose) sws_printVec(filter->lumH);

    return filter;
}

/**
 * returns a normalized gaussian curve used to filter stuff
 * quality=3 is high quality, lowwer is lowwer quality
 */
SwsVector *sws_getGaussianVec(double variance, double quality){
    const int length= (int)(variance*quality + 0.5) | 1;
    int i;
    double *coeff= av_malloc(length*sizeof(double));
    double middle= (length-1)*0.5;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++)
    {
        double dist= i-middle;
        coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
    }

    sws_normalizeVec(vec, 1.0);

    return vec;
}

SwsVector *sws_getConstVec(double c, int length){
    int i;
    double *coeff= av_malloc(length*sizeof(double));
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++)
        coeff[i]= c;

    return vec;
}


SwsVector *sws_getIdentityVec(void){
    return sws_getConstVec(1.0, 1);
}

double sws_dcVec(SwsVector *a){
    int i;
    double sum=0;

    for (i=0; i<a->length; i++)
        sum+= a->coeff[i];

    return sum;
}

void sws_scaleVec(SwsVector *a, double scalar){
    int i;

    for (i=0; i<a->length; i++)
        a->coeff[i]*= scalar;
}

void sws_normalizeVec(SwsVector *a, double height){
    sws_scaleVec(a, height/sws_dcVec(a));
}

static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
    int length= a->length + b->length - 1;
    double *coeff= av_malloc(length*sizeof(double));
    int i, j;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++)
    {
        for (j=0; j<b->length; j++)
        {
            coeff[i+j]+= a->coeff[i]*b->coeff[j];
        }
    }

    return vec;
}

static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
    int length= FFMAX(a->length, b->length);
    double *coeff= av_malloc(length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];

    return vec;
}

static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
    int length= FFMAX(a->length, b->length);
    double *coeff= av_malloc(length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];

    return vec;
}

/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
    int length= a->length + FFABS(shift)*2;
    double *coeff= av_malloc(length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++)
    {
        coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
    }

    return vec;
}

void sws_shiftVec(SwsVector *a, int shift){
    SwsVector *shifted= sws_getShiftedVec(a, shift);
    av_free(a->coeff);
    a->coeff= shifted->coeff;
    a->length= shifted->length;
    av_free(shifted);
}

void sws_addVec(SwsVector *a, SwsVector *b){
    SwsVector *sum= sws_sumVec(a, b);
    av_free(a->coeff);
    a->coeff= sum->coeff;
    a->length= sum->length;
    av_free(sum);
}

void sws_subVec(SwsVector *a, SwsVector *b){
    SwsVector *diff= sws_diffVec(a, b);
    av_free(a->coeff);
    a->coeff= diff->coeff;
    a->length= diff->length;
    av_free(diff);
}

void sws_convVec(SwsVector *a, SwsVector *b){
    SwsVector *conv= sws_getConvVec(a, b);
    av_free(a->coeff);
    a->coeff= conv->coeff;
    a->length= conv->length;
    av_free(conv);
}

SwsVector *sws_cloneVec(SwsVector *a){
    double *coeff= av_malloc(a->length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= a->length;

    for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];

    return vec;
}

void sws_printVec(SwsVector *a){
    int i;
    double max=0;
    double min=0;
    double range;

    for (i=0; i<a->length; i++)
        if (a->coeff[i]>max) max= a->coeff[i];

    for (i=0; i<a->length; i++)
        if (a->coeff[i]<min) min= a->coeff[i];

    range= max - min;

    for (i=0; i<a->length; i++)
    {
        int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
        av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
        for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
        av_log(NULL, AV_LOG_DEBUG, "|\n");
    }
}

void sws_freeVec(SwsVector *a){
    if (!a) return;
    av_free(a->coeff);
    a->coeff=NULL;
    a->length=0;
    av_free(a);
}

void sws_freeFilter(SwsFilter *filter){
    if (!filter) return;

    if (filter->lumH) sws_freeVec(filter->lumH);
    if (filter->lumV) sws_freeVec(filter->lumV);
    if (filter->chrH) sws_freeVec(filter->chrH);
    if (filter->chrV) sws_freeVec(filter->chrV);
    av_free(filter);
}


void sws_freeContext(SwsContext *c){
    int i;
    if (!c) return;

    if (c->lumPixBuf)
    {
        for (i=0; i<c->vLumBufSize; i++)
        {
            av_free(c->lumPixBuf[i]);
            c->lumPixBuf[i]=NULL;
        }
        av_free(c->lumPixBuf);
        c->lumPixBuf=NULL;
    }

    if (c->chrPixBuf)
    {
        for (i=0; i<c->vChrBufSize; i++)
        {
            av_free(c->chrPixBuf[i]);
            c->chrPixBuf[i]=NULL;
        }
        av_free(c->chrPixBuf);
        c->chrPixBuf=NULL;
    }

    av_free(c->vLumFilter);
    c->vLumFilter = NULL;
    av_free(c->vChrFilter);
    c->vChrFilter = NULL;
    av_free(c->hLumFilter);
    c->hLumFilter = NULL;
    av_free(c->hChrFilter);
    c->hChrFilter = NULL;
#ifdef HAVE_ALTIVEC
    av_free(c->vYCoeffsBank);
    c->vYCoeffsBank = NULL;
    av_free(c->vCCoeffsBank);
    c->vCCoeffsBank = NULL;
#endif

    av_free(c->vLumFilterPos);
    c->vLumFilterPos = NULL;
    av_free(c->vChrFilterPos);
    c->vChrFilterPos = NULL;
    av_free(c->hLumFilterPos);
    c->hLumFilterPos = NULL;
    av_free(c->hChrFilterPos);
    c->hChrFilterPos = NULL;

#if defined(ARCH_X86) && defined(CONFIG_GPL)
#ifdef MAP_ANONYMOUS
    if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
    if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
#else
    av_free(c->funnyYCode);
    av_free(c->funnyUVCode);
#endif
    c->funnyYCode=NULL;
    c->funnyUVCode=NULL;
#endif /* defined(ARCH_X86) */

    av_free(c->lumMmx2Filter);
    c->lumMmx2Filter=NULL;
    av_free(c->chrMmx2Filter);
    c->chrMmx2Filter=NULL;
    av_free(c->lumMmx2FilterPos);
    c->lumMmx2FilterPos=NULL;
    av_free(c->chrMmx2FilterPos);
    c->chrMmx2FilterPos=NULL;
    av_free(c->yuvTable);
    c->yuvTable=NULL;

    av_free(c);
}

/**
 * Checks if context is valid or reallocs a new one instead.
 * If context is NULL, just calls sws_getContext() to get a new one.
 * Otherwise, checks if the parameters are the same already saved in context.
 * If that is the case, returns the current context.
 * Otherwise, frees context and gets a new one.
 *
 * Be warned that srcFilter, dstFilter are not checked, they are
 * asumed to remain valid.
 */
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
                                        int srcW, int srcH, int srcFormat,
                                        int dstW, int dstH, int dstFormat, int flags,
                                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
{
    static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};

    if (!param)
        param = default_param;

    if (context) {
        if (context->srcW != srcW || context->srcH != srcH ||
            context->srcFormat != srcFormat ||
            context->dstW != dstW || context->dstH != dstH ||
            context->dstFormat != dstFormat || context->flags != flags ||
            context->param[0] != param[0] || context->param[1] != param[1])
        {
            sws_freeContext(context);
            context = NULL;
        }
    }
    if (!context) {
        return sws_getContext(srcW, srcH, srcFormat,
                              dstW, dstH, dstFormat, flags,
                              srcFilter, dstFilter, param);
    }
    return context;
}


Generated by  Doxygen 1.6.0   Back to index